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Karenia brevis blooms on Florida's Gulf Coast severely affect regional ecosystems, coastal economies, and public health,
and formulating effectivemanagement and policy strategies to address these blooms requires an advanced understand-
ing of the processes driving them. Recent research suggests that natural processes explain offshore bloom initiation and
shoreward transport, while anthropogenic nutrient inputs may intensify blooms upon arrival along the coast. How-
ever, past correlation studies have failed to detect compelling evidence linking coastal blooms to watershed covariates
indicative of anthropogenic inputs. We explain why correlation is neither necessary nor sufficient to demonstrate a
causal relationship—i.e., a persistent pattern of interaction governed by deterministic rules—and pursue an empirical
investigation leveraging the fact that systematic temporal patterns may reveal systematic cause-and-effect relation-
ships. Using time series derived from in-situ sample data, we applied singular spectrum analysis—a non-parametric
spectral decomposition method—to recover deterministic signals in the dynamics of K. brevis blooms and upstream
water quality anddischarge covariates in theCharlotteHarbor region between 2012 and 2021.Next,we applied causal
analysis methods based on chaos theory—i.e., convergent cross-mapping and S-mapping—to detect and quantify per-
sistent, state-dependent interaction regimes between coastal blooms and watershed covariates. We discovered that
nitrogen-enriched Caloosahatchee River discharges have consistently intensified K. brevis blooms to varying degrees
over time. River discharge was typically most influential at the earliest stages of blooms, while total nitrogen concen-
trations exerted the strongest influence during blooms' growth/maintenance stages. These results indicate that dis-
charges and nitrogen inputs influence blooms through distinct yet synergistic causal mechanisms. Additionally, we
traced this anthropogenic influence upstream to Lake Okeechobee (which discharges to the Caloosahatchee River)
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and the Kissimmee River basin (which drains into Lake Okeechobee), suggesting that watershed-scale nutrient man-
agement and modifications to Lake Okeechobee discharge protocols will likely be necessary to mitigate coastal
blooms.
1. Introduction

Harmful algal blooms (HABs) are complex phenomena whose mecha-
nistic drivers vary by locale, by species, and by bloom event (Anderson
et al., 2012; Anderson et al., 2021; Vargo, 2009). Describing the mecha-
nisms that give rise to these blooms has been the subject of intense research
effort aimed at supporting the development of effective prevention andmit-
igation strategies (Anderson et al., 2012; Anderson et al., 2021; Paerl et al.,
2018). Along Florida's Gulf Coast (USA), blooms of Karenia brevis—a
mixotrophic marine dinoflagellate—threaten public health, interrupt eco-
nomic activity, and contribute to ongoing degradation of ecological com-
munities (Anderson et al., 2021; Backer, 2009; Bechard, 2021; Court
et al., 2021; Sonak et al., 2018). Recent research indicates that the develop-
ment of these blooms is determined by both natural and anthropogenic pro-
cesses and their interactions: Atmospheric, biological, and oceanographic
processes explain offshore bloom initiation in the Gulf ofMexico and advec-
tion of blooms toward the coast (Steidinger, 2009; Walsh et al., 2006;
Weisberg et al., 2019), while altered discharge and nutrient loading re-
gimes associated with urban and agricultural development may intensify
blooms upon their arrival along the coast (Anderson et al., 2008; Heil
et al., 2014b; Medina et al., 2020).

The role of anthropogenic forcing in the coastal K. brevis bloom phe-
nomenon is not well resolved—a knowledge gap, that if filled, would reveal
opportunities to mitigate bloom intensity, duration, and impacts, along
with other water quality problems linked to eutrophication, such as hyp-
oxia (Milbrandt et al., 2021; Vargo, 2009) and macroalgae blooms
(Milbrandt et al., 2019). This study empirically investigates the dynamics
of coastal K. brevis blooms in southwest Florida and several watershed co-
variates along a major flow path to the coast, to identify persistent and sys-
tematic anthropogenic drivers of blooms as targets for management and
policy intervention.We focus onK. brevis blooms between Charlotte Harbor
and the Caloosahatchee River (Fig. 1), a region whose wildlife, public
health, and economic activity have suffered adverse impacts (Court et al.,
2021; Gravinese et al., 2020; Milbrandt et al., 2021; Sonak et al., 2018).

Past empirical investigations of ‘the anthropogenic hypothesis’—that an-
thropogenic nutrient inputs intensify K. brevis blooms along Florida's Gulf
Coast—support its mechanistic plausibility. Using paleo-indicators, Turner
et al. (2006) estimated a threefold increase in nitrogen (N) loading to Char-
lotte Harbor between 1800 and 2000, associated with population growth
and land use intensification. Heil et al. (2014b) found that terrestrial nutrient
loads can substantially contribute to the nutrient requirements of small estu-
arine blooms (<105 cells/l), providing up to 17%ofN and69%of phosphorus
(P) during dry years, and up to 100% of N and P during wet years.

Other empirical studies probing a direct link between anthropogenic
nutrients and K. brevis blooms along the Gulf Coast have focused on corre-
lation analysis and have yielded mixed evidence. For instance, Dixon and
Steidinger (2002) found that coastal K. brevis presence was significantly
correlated with discharges (with short time lags) from most rivers along
Florida's central and southern Gulf Coast between 1953 and 1998. Notably,
however, these authors found no such correlation with Caloosahatchee
River discharges, speculating that nutrient loading, not discharge, was the
relevant factor (Dixon and Steidinger, 2002). Later, Dixon et al. (2014)
found no clear links between K. brevis blooms and terrestrial nutrient inputs
across a large study area, from Tampa Bay to the Caloosahatchee estuary,
between 2007 and 2010.

Thismixed evidence enables persistent uncertainty aboutwhether anthro-
pogenic forcing of blooms is sufficiently resolved to justify management and
policy intervention. To help resolve these inconsistencies, we point out that
the anthropogenic hypothesis is fundamentally a causal hypothesis and that
correlations are often not a reliable test of causal hypotheses about complex,
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open systems (Deyle et al., 2016; Sugihara et al., 2012). First, a significant cor-
relation between coastal eutrophication and HABs would not necessarily
evince a causal connection, since the correlation might simply reflect coinci-
dental seasonal forcing. Inversely, a lack of correlation does not necessarily
imply a lack of causation, since correlations detect only simple relationships
—i.e., proportional or monotonic responses (see demonstration in Fig. 2).
As such, variables in a complex system may consistently interact and yet
show no correlation, or exhibit ‘mirage correlations’ that vary in magnitude
and direction over time (Sugihara et al., 2012).

There is good reason to suspect that causality between coastal eutrophica-
tion and HABs cannot be reliably detected simply by assessing correlations
(Anderson et al., 2012). Nutrient/discharge-HAB interactions are typically
state-dependent, such that the magnitude of interaction varies over time as a
function of multiple dynamic variables in the system (Isles and Pomati,
2021; McGowan et al., 2017; Medina et al., 2020). In Florida, coastal
K. brevis blooms—which exist at the interface of dynamic oceanographic
and watershed processes—depend on nutrient and salinity conditions influ-
enced by tides and circulation, pelagic and benthic nutrientfluxes, freshwater
inputs from the land, watershed-sourced nutrient fluxes, and coastal nutrient
recycling (Dixon and Steidinger, 2002; Heil et al., 2014b; Steidinger, 2009;
Vargo, 2009). Engineered management of flows (i.e., Lake Okeechobee
discharges via the Caloosahatchee River) and growing urban development
on the coast introduce additional complexity and, potentially, non-
stationarities in the relationships among nutrients, discharges, and blooms.

To investigate the anthropogenic K. brevis hypothesis, we adopt a deter-
ministic approach that avoids the limitations of statistical correlation. Cen-
tral to this paradigm is the concept of phase space (Fig. 2C), a representation
of system dynamics that facilitates investigation of causal hypotheses in a
state-dependent context (Sugihara et al., 2012). As in the familiar
scatterplot, the axes defining a phase space correspond to variables, and
the coordinates of each point in the space are a unique combination of
the states of these variables (Nolte, 2010). Thus, the phase space of a system
represents all possible system states, and an important feature of the space
is that neighboring points correspond to similar states. For a certain class of
complex systems—dissipative systems—the evolution of the system in time
traces a trajectory through phase space along a manifold, an object whose
topology (shape) encodes the rules governing the variables' interactions
(Kaplan and Glass, 1995). The deterministic rules of a dissipative system con-
strain the manifold to a compact, low-dimensional region of phase space, en-
abling analysis of the system with respect to only a small set of variables
(Kaplan and Glass, 1995). In practice, however, we lack full information on
system dynamics (i.e., data on every variable) and cannot observe the true
manifold. Instead,we can draw inferences from low-dimensional shadowman-
ifolds—phase space reconstructions built from time series of one or more var-
iables—given that these reconstructions preserve information encoded in the
true, unobserved manifold (Deyle and Sugihara, 2011; Takens, 1981).

Low-dimensional phase space representations enable causal inference
because interacting variables detectably share information such that the
history of any one variable in a system potentially encodes information
about its drivers' dynamics (Sugihara et al., 2012). For the purposes of
this study, therefore, we use the term ‘causality’ to refer to a systematic
and persistent pattern of interaction governed by deterministic rules, in
contrast with, for instance, responses to stochastic pulse disturbances.
This form of investigation of causes and effects respects the dynamic,
state-dependent nature of interactions in complex systems (encoded in
the topology of the manifold), in contrast to correlation tests and other sta-
tistical procedures that reduce interactions to static processes (Fig. 2D)
(Deyle et al., 2016; Sugihara et al., 2012).

Using phase space methods, Medina et al. (2020) recently detected a
causal link between K. brevis blooms near Charlotte Harbor and N



Fig. 1. Southwest Florida study area. The Charlotte Harbor estuary watershed comprises sevenHUC-8 basins (HUC: Hydrologic Unit Code), outlined in black, and three main
rivers. The Caloosahatchee River conveys discharges from Lake Okeechobee, which drains the predominantly agricultural Kissimmee, Northern Okeechobee, and Western
Okeechobee basins. Red points indicate K. brevis sample locations (n = 18,160) near Charlotte Harbor and the Caloosahatchee estuary, within 1.61 km (1 mi) of the
coastline and latitude bounds (26.375°, 27°), between January 2005 and February 2021. Discharge and water quality data were obtained from the following flow control
structures (blue triangles): the Caloosahatchee River estuary (S79), Lake Okeechobee discharge to the Caloosahatchee River (S77), and Kissimmee River discharge to
Lake Okeechobee (S65E). GIS shapefiles for land use and HUC-8 boundaries provided by Florida Department of Environmental Protection (2016) and Florida Department
of Environmental Protection (2017).

M. Medina et al. Science of the Total Environment 827 (2022) 154149
concentrations in Caloosahatchee River discharges between 2012 and
2018. However, the study left several important questions unanswered.
First, the study limited investigation to causal connections occurring within
the same 14-day time step and did not account for delayed effects. Second,
the study did not characterize the nature of the relationship between N in-
puts and K. brevis blooms. For instance, it is possible that N-enriched dis-
charges strictly facilitate, or intensify, blooms (a positive relationship).
Alternatively, the sign of the interaction may vary in time—at times facili-
tative due to N inputs and at other times inhibitive due to, for instance,
the associated influx of low-salinity freshwater. Finally, the study did not
resolve whether the influence of Caloosahatchee River N dynamics on
K. brevis blooms could be traced upstream to Lake Okeechobee and the
Kissimmee River basin,whichwould imply influence from a vastwatershed
beyond the lands and waterways immediately adjacent to the coast.

The current study sheds further light on the persistent causal influence
of anthropogenic processes—in particular, nutrient-enriched discharges—
3

on K. brevis blooms near Charlotte Harbor, by investigating the following
hypotheses (Fig. 3A):

Hypothesis 1. Nutrient-enriched discharges from the Caloosahatchee
River systematically facilitate (intensify) K. brevis blooms near Charlotte
Harbor and the Caloosahatchee estuary.

Hypothesis 2. This facilitative influence reaches upstream to Lake
Okeechobee and the Kissimmee River, which drains into Lake Okeechobee.
2. Methods

2.1. Overview

We tested the two hypotheses in sequence; the results from testing the
first hypothesis informed the testing of the second (Fig. 3A). Our



Fig. 2. Correlation and causality. In (A), a scatterplot of two sets of random values shows their lack of correlation. However, in (B), two variables with a clearly dependent
relationship are also uncorrelated (the best-fit line has zero slope). In (C), we provide the phase space representation of a system of three variables (x, y, z) that causally
interact according to deterministic rules; these are simulated data from the differential equation model of Lorenz (1969). Starting from time t = 0, the system state traces
a trajectory through phase space as it evolves in time (a few points along the early trajectory are labeled). The system orbits along a manifold, or attraction basin, whose
shape encodes the rules (equations) governing the dynamic state-dependent interactions among x, y, and z. In (D), a scatterplot of two Lorenz variables shows a lack of
correlation despite the variables' underlying causal relationship. Further, if we consider subsets of the plotted data, correlations would be misleading: Different subsets
may show positive correlation (data in the upper lobe), negative correlation (lower lobe), or no correlation.
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investigation follows the workflow in Fig. 3B. First, we built time series
from in-situ discharge data and water quality sample data: K. brevis concen-
trations, N and P concentrations, and specific conductance. From each time
series, we attempted to recover a temporally structured signal and recon-
struct a shadow manifold; diagnostic procedures test these manifolds for
nonlinear stationarity and low-dimensional, deterministic structure. Next,
the presence of systematic patterns of behavior (signals) suggests the
potential for systematic cause-and-effect mechanisms. We tested for
hypothesized causal interactivity between covariate pairs (e.g., total nitro-
gen and K. brevis) by measuring correspondence between the associated
shadow manifolds. In each case, the results were scrutinized to ensure
that coincidence (shared seasonality) was not mistaken for true causality.
For Hypothesis 1, we also quantified the interaction regime among
K. brevis and its detected causal drivers, by constructing a low-
dimensional manifold from the associated signals and analyzing its
structure. Below, Sections 2.3 through 2.5 provide details on each of the
methodological procedures.
4

2.2. Study area

TheK. brevis study area comprises coastal areas including Charlotte Har-
bor, Gasparilla Sound, Pine Island Sound, Matlacha Pass, the Caloosa-
hatchee River Estuary, San Carlos Bay, and parts of Estero Bay and the
Gulf of Mexico (hereafter referred to collectively as “Charlotte Harbor estu-
ary”), as described more precisely in the subsequent subsection. The Char-
lotte Harbor estuary receives N- and P-enriched freshwater from a large,
highly developed, and hydrologically altered watershed representing ap-
proximately one-sixth of Florida's total area (Florida Department of
Environmental Protection, 2016; Florida Department of Environmental
Protection, 2017). The watershed comprises seven HUC-8 basins as delin-
eated by the U.S. Geological Survey (USGS), and three main rivers—the
Myakka, Peace, and Caloosahatchee—flow into the Charlotte Harbor
estuary (Fig. 1).

Our study focuses on the highlymanaged flow path from the Kissimmee
River to Lake Okeechobee to the Caloosahatchee River to the Charlotte



Fig. 3. Summary of hypotheses and empirical procedures. (A) Hypothesis 1 (red arrow) investigates discharge and water quality dynamics at S79 (Caloosahatchee River
structure) as drivers of K. brevis blooms. Contingent on this investigation, Hypothesis 2 (blue arrows) investigates dynamics at S77 and S65E (Lake Okeechobee and
Kissimmee River structures) as drivers of S79 conditions driving K. brevis. Photo credit: NASA. (B) A workflow for discovery of complex signals and causal connections.
Investigation of interaction regimes (S-mapping) applies solely to Hypothesis 1.
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Harbor estuary. The Kissimmee River drains a 7590 km2 basin and is the
main inflow to the eutrophic Lake Okeechobee. The Lake provides flood
protection, drinking water, and agricultural irrigation water for South Flor-
ida, and the U.S. Army Corps of Engineers manages Lake discharges to the
Gulf Coast via the Caloosahatchee River, to the Atlantic coast via the St.
Lucie River, and south to the Everglades through a highly engineered sys-
tem of canals and control structures. Historically, the Caloosahatchee
River originated at Lake Hicpochee, but the 19th-century construction of
a canal connecting Lakes Hicpochee and Okeechobee vastly expanded the
watershed of the Caloosahatchee River beyond its own basin (3640 km2)
to include Lake Okeechobee and its watershed (Steinman et al., 2002).

Within the Kissimmee basin, land use is 44% agricultural/rangeland
and 24% urban, and within the Caloosahatchee basin, land use is 46%
agriculture/rangeland and 14% urban (Fig. 1; Florida Department of
Environmental Protection, 2017). The agriculture/rangeland category en-
compasses a spatially heterogeneous mix of agricultural uses, including
but not limited to grazing, improved pasture, dairy farms, row crops, and
tree crops, that vary in terms of their characteristic impacts on water qual-
ity. A recent stable-isotope analysis identified agricultural nutrient runoff—
in particular, runoff associated with summertime (wet season) application
of ammonium (NH4

+) fertilizers—as the primary source of nitrate (NO3)
within Lake Okeechobee (Ma et al., 2020). The urban land use category in-
cludes commercial, industrial, and low- to high-density residential develop-
ments, with spatially heterogeneous stormwater and sewage management,
including onsite septic systems and centralized treatment infrastructure
(Carey et al., 2012). Coastal urban developments within the study area con-
tain high densities of septic systems along residential canals that are di-
rectly connected to the estuary (Buszka and Reeves, 2021).

Our choice to focus on the flow path through the Kissimmee basin, Lake
Okeechobee, and the Caloosahatchee basin was primarily motivated by the
recognition that the engineered management of Lake discharges affords
5

unique opportunities to mitigate coastal K. brevis blooms, if these dis-
charges are indeed identified as an important contributing factor. In addi-
tion, our analysis was constrained by data limitations, as the monitoring
data from the Peace and Myakka Rivers were insufficient to construct
time series of adequate length or resolution for analysis with phase space
methods (i.e., fewer than five years of data and/or sampling frequency of
less than one sample per 14 days). The basins that were excluded from
our analysis—Myakka (1560 km2), Peace (6070 km2), Charlotte Harbor
(1570 km2), Western Okeechobee (2170 km2), and Northern Okeechobee
(790 km2)—represent substantial land area and sources of flows and
nutrients, and future analyses of watershed contributions to K. brevis
blooms near Charlotte Harbor estuary should certainly consider these
contributions.

The Florida wet season occurs during the summer (approximately June
through September), and the area receivedmean annual rainfall of approx-
imately 120 cm/yr between January 2012 and February 2021 (data from
the Florida Automated Weather Network, http://fawn.ifas.ufl.edu/).
Mean daily discharge at the Caloosahatchee River (station S79) was
5.80 × 106 m3/d between January 2012 and February 2021.

2.3. Data

Karenia brevis concentration data (cells/l) were obtained from the
NOAA Harmful Algal Blooms Observing System (HABSOS) database, ver-
sion 5.5 (NOAA National Centers for Environmental Information, 2014);
these data were provided to NOAA by the Florida Fish andWildlife Conser-
vation Commission. The dataset used for analysis includes n= 18,160 ob-
servations from the area bounded by latitudes 26.375° and 27.000° and
within 1.61 km (1mi) of the coastline between January 2005 and February
2021 (Fig. 1; see Video A.1). Some bias is to be expected in this dataset,
since the K. brevis sampling regime includes both routine and event-based

http://fawn.ifas.ufl.edu/
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sampling (not random). Karenia brevis blooms are typically seasonal, occur-
ring in the fall following the summer rainy season. Themaximum observed
K. brevis concentration was 1.50 × 108 cells/l, and the mean was 1.65 ×
105 cells/l. Most samples (90%) were collected at a depth of 0.5 m or
less, and 99% of samples were collected at a depth of 5 m or less. Karenia
brevis observations from the bounded area were aggregated to construct a
time series with a two-week temporal resolution by computing the
arithmetic mean of all available observations during each 14-day period.
The two-week temporal resolution of the time series was determined by
the availability of upstream water quality data, which were often collected
at 14-day intervals, to minimize the need for imputation of missing values.
The resulting time series was log10-transformed (zero values remained
at zero). The log-transformed time series used for analysis represents the
order of magnitude of K. brevis densities and emphasizes bloom events.

Water quality grab-sample data (total nitrogen, TN; total phosphorus,
TP; nitrate+nitrite-N, NOx; orthophosphate-P, PO4; and specific conduc-
tance, SpC) were obtained from the South Florida Water Management
District (SFWMD) DBHYDRO database (https://www.sfwmd.gov/science-
data/dbhydro). The sample locations (flow structures) include S79 at the
lower Caloosahatchee River, S77 where Lake Okeechobee discharges into
the Caloosahatchee River, and S65E where the Kissimmee River discharges
Lake Okeechobee (Fig. 1). Some TN data were generated by summing con-
current NOx and TKN (total Kjeldahl nitrogen) observations. Water quality
data flagged with fatal qualifier codes (Remark Codes G, J, Q, V, Y) or
marked as field/equipment blanks or replicate samples (Sample Types EB,
FCEB, RS) were removed from the dataset, according to the DBHYDRO
User Guide (South Florida Water Management District [SFWMD], 2020).
Non-detect values (Remark Code U) were replaced with the corresponding
method detection limit. A time series for each water quality parameter at
each station was constructed at a two-week resolution by computing the ar-
ithmetic mean of all available observations during each 14-day period to
coincide with the two-week periods as determined by the K. brevis data (be-
ginning on January 11, 2005). Several water quality time series include
missing values (two-week periods with no available data) that were im-
puted by linear interpolation (see Table 1). To reduce the need for interpo-
lation, we excluded all data prior to the earliest occurrence of two
consecutive missing values. As such, water quality periods of record
(PORs) vary. Daily discharge (Q) data from station S79 were likewise ob-
tained from DBHYDRO and aggregated to construct a time series at a
two-week resolution.

2.4. Signal recovery

Following Huffaker et al. (2016) and Medina et al. (2020), we applied
signal processing and diagnostic procedures to isolate a signal representing
systematic behavior in each time series, using all available data for each
variable (PORs vary). Diagnostics test whether recovered signals exhibit
Table 1
Signal processing and diagnostic results for K. brevis log-concentration and hypothesized

Variable Period of record Series
length

Missing
valuesa

K. brevis log(concentration) 2005-01-11–2021-02-16 421 0
S79 discharge 2012-01-03–2021-05-25 246 0
S79 specific conductance 2010-04-27–2021-05-25 290 0.3%
S79 TN concentration 2011-06-21–2021-05-25 260 0.4%
S79 NOx concentration 2009-03-17–2021-05-25 319 4.1%
S79 TP concentration 2009-03-17–2021-05-25 319 4.1%
S79 PO4 concentration 2009-03-17–2021-05-25 319 4.1%
S77 TN concentration 2010-03-30–2021-05-25 292 1.0%
S77 NOx concentration 2005-01-11–2021-05-25 428 3.3%
S65E TN concentration 2005-01-11–2021-05-25 428 7.0%
S65E NOx concentration 2005-01-11–2021-05-25 428 8.4%

a The number of missing values as a percentage of time series length.
b The inverse of the peak frequency computed by Fourier transformation.
c The percentage of variance explained by the signal.
d The number of rejections of the null hypothesis out of four surrogate data tests. Rejec
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stationarity and low-dimensional, deterministic structure, as required by
the causal analysis that follows.

2.4.1. Signal processing
Environmental data typically contain noise representing observational

error, high-dimensional processes, and exogenously forced extreme values
(Regan et al., 2002; Uusitalo et al., 2015). We isolated temporally struc-
tured components of each time series (signal) from noise using singular
spectrum analysis (SSA), a non-parametric spectral decomposition and re-
construction method, according to the procedures described below, follow-
ing Ghil et al. (2002), Golyandina and Korobeynikov (2014), and Hassani
(2007). Prior to SSA, each time series was centered by subtracting the
mean of the series from each element, so that the signal strength reflects
variance from the mean, rather than separation from zero. During SSA de-
composition, a time series is represented as a sum of eigentriple components
that are inspected to determine whether they should be grouped as part of
the signal or the noise (see Appendix A for mathematical details). Signal
components (trends and oscillations) exhibit the following characteristics:
relatively large singular values, independence from other components (or-
thogonality), and, in the case of oscillations, peaks in the Fourier power
spectrum. Next, during SSA reconstruction, the signal is obtained by sum-
ming the components corresponding to selected eigentriples (thus filtering
out the noise components). The signal strength—the proportion of the time
series' variance explained by the signal—is computed as the sum of the as-
sociated singular values, divided by the sum of all singular values in the de-
composition. It is worth noting that the goal of SSA is not maximize signal
strength, which can be arbitrarily increased by including more eigentriples
as part of the signal. Instead, the goal is to recover any low-dimensional
temporal structure present within the time series.

2.4.2. Phase space reconstruction
Each signal can potentially be used to reconstruct a shadowmanifold (sys-

tem dynamics) by embedding the signal in phase space. We used the time-
delay embedding method of Takens (1981), which guarantees that the
shadow manifold preserves the topology of the true (unobserved) manifold
under certain conditions. Phase space coordinates for the shadow manifold
are given by the normalized signal x(t) (scaled on [0,1]) and a few (m −
1) time-delayed copies x(t + d), x(t + 2d), …, where d is the embedding
delay and m is the embedding dimension. Following Fraser and Swinney
(1986), we set d as the first local minimum of the mutual information func-
tion, and following Kennel et al. (1992), we setm using a false nearest neigh-
bors test. Shadow manifolds for low-dimensional, nonlinear-deterministic
systems exhibit visually apparent organization or structure (aperiodic orbits).

2.4.3. Stationarity tests
Our analysis of causality assumes that the system's structure, or dynam-

ical regime, has remained consistent throughout the study period—
drivers.

Spectral peakb

(wk)
Signal
strengthc

Embedding
dimension

H0 rejectionsd

(surrogate tests)

53 66.2% 3 4/4
55 66.6% 3 4/4

145 72.9% 3 3/4
52 48.9% 3 4/4
53 61.6% 2 4/4
53 76.9% 3 2/4
53 59.6% 3 4/4
53 45.0% 3 3/4

107 21.2% – –
285 52.9% 3 3/4
54 64.5% 3 3/4

tions provide evidence that signals capture low-dimensional deterministic structure.

https://www.sfwmd.gov/science-data/dbhydro
https://www.sfwmd.gov/science-data/dbhydro
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i.e., stationarity. In the context of nonlinear systems, we tested each shadow
manifold for nonlinear stationarity using space-time separation plots, in
which a stationary manifold exhibits space-time curves that either saturate
to or oscillate around a stable value (Provenzale et al., 1992). This sense of
stationarity is different than weak stationarity (from linear time series anal-
ysis) evinced by constant statistical moments (mean and variance), since
statistical moments may vary in a nonlinear system despite no changes in
the manifold's structure (Kantz and Schreiber, 2004). Additional details
are provided in Appendix A.

2.4.4. Surrogate data tests
The visual organization of a shadow manifold is insufficient to indicate

low-dimensional determinism, because linear-stochastic processes (e.g., a
limit cycle) may mimic this apparent structure (Theiler et al., 1992).
Thus, we formulated a null hypothesis (i.e., the manifold's apparent struc-
ture is due to a linear-stochastic process) and tested it using surrogate
data. For each shadow manifold, we generated two ensembles of surrogate
manifolds—adjusted amplitude Fourier transform (AAFT) surrogates and
pseudo-periodic surrogates (PPS)—and estimated null distributions of
two statistics from each of these ensembles (Small and Tse, 2002; Theiler
et al., 1992). These statistics include (1) nonlinear prediction skill, based
on one-step-ahead, nearest-neighbors prediction; and (2) permutation en-
tropy, whichmeasures the information content of the signal, with relatively
low entropy indicating determinism (Brandt and Pompe, 2002; Kaplan and
Glass, 1995). Thus, four rank-order hypothesis tests were performed for
each shadow manifold (two ensembles times two statistics). Each null dis-
tribution comprised statistics from 399 surrogates (number of surrogates
N = k/α − 1 = 399, with significance level α = 0.05 and k = 20). Tests
rejected the null hypothesis if the shadow manifold's prediction skill (per-
mutation entropy) was among the k largest (smallest) values in the null dis-
tribution. Rejections are consistent with the claim that the signal reflects a
low-dimensional, nonlinear-deterministic process and justifies low-
dimensional causal inference as described below. Additional details are
provided in Appendix A.

2.5. Causal analysis

The causal analysis includes manifold-based methods to identify caus-
ally related covariate pairs (Sugihara et al., 2012; Ye et al., 2015) and to
quantify the interaction regime among selected covariates over time
(Deyle et al., 2016; Sugihara et al., 2012). These analyses used data from
January 2012 through February 2021.

2.5.1. Convergent cross-mapping
Two causally related variables share information such that the dynam-

ics of the driver can be recovered from the dynamics of the response; this
holds whether the driver and response interact directly or through one or
more intermediate variables (Sugihara et al., 2012). Convergent cross-
mapping (CCM) tests whether two variables are causally related by quanti-
fying the structural correspondence between their shadowmanifolds, as de-
scribed below, following Sugihara et al. (2012). To test the hypothesis that
x drives y, the CCM procedure y xmap x (read: ‘y cross-map x’) uses a
nearest-neighbors algorithm to predict values of x (the target) using points
on the shadow manifold (the library) reconstructed from the y signal.
Note that the prediction direction (y xmap x) is the opposite of the causal
direction (x drives y). The algorithm begins by predicting from a small, ran-
dom subset of the full library and iteratively increases library size; causality
is consistent with cross-map prediction skill that increases with library size
and converges to a positive value in [0,1]. Cross-map skill is expressed as
the Pearson correlation ρ between actual and predicted values of the target;
reported skill values are the mean ρ from the largest 10% of libraries across
100 replicate tests.

Whereas CCM tests for causality within the same time step (twoweeks),
we used Extended CCM to test for delayed effects by using libraries to pre-
dict backward- and forward-lagged targets, following Ye et al. (2015) as de-
scribed below. A delayed effect is apparent when cross-map skill peaks at a
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backward lag (cause precedes effect). Peak skill at a forward lag is consis-
tent with an effect preceding the hypothesized cause, to indicate no causal-
ity in the hypothesized direction.

We further scrutinized CCM results to rule out the possibility that a de-
tected causal relationship is spurious due to coincidental seasonality with
no underlying causal mechanism. For each causally related pair, we tested
the null hypothesis (coincidental seasonality without causality) at each
non-positive time lag by bootstrapping 500 surrogate time series that main-
tain the signals' seasonality and comparing the original CCM result (cross-
map skill) to the null distribution (α= 0.05). Surrogates were constructed
by approximating the signal's seasonal (52-week) cycle with a smoothing
spline and shuffling the residuals (Park et al., 2021).

2.5.2. S-mapping
Due to state dependence, the magnitude and direction of a causal inter-

action may vary over time (Deyle et al., 2016). We applied S-mapping to
quantify interaction regimes among selected causally related variables
(identified by CCM) and to characterize the interactions as facilitative or in-
hibitive over time. Following Deyle et al. (2016) as described below, the S-
mapping procedure embeds a low-dimensionalmanifold to compute the Ja-
cobian matrix at each successive time step, using a locally weighted linear
regression to estimate the local, approximately linear gradients (slopes)
on themanifold. The elements of each Jacobian arefirst-order partial deriv-
atives (gradients) evaluated at a particular point on the manifold, approxi-
mating the magnitude of interaction among variables at a given time step.
For instance, if we are interested in the drivers of x, the first row of the Ja-
cobianmatrix for a manifold in x, y, z space provides the partial derivatives
∂x tþ1ð Þ
∂x tð Þ , ∂x tþ1ð Þ

∂y tð Þ , ∂x tþ1ð Þ
∂z tð Þ

n o
quantifying the effects of marginal increases in x, y,

and z at time t on x at t+1. A collection of successive partial derivatives at
each t is a time series of interaction coefficients whose sign at a given time
stepmay be positive or negative, indicating facilitative or inhibitive interac-
tion, respectively.

The S-mapping procedure uses one tunable parameter, θ, that controls
how strongly the regression is localized (Deyle et al., 2016). For θ = 0,
the regression is not localized, and the estimated gradients do not vary
with location on the manifold, reflecting a state-independent interaction.
Positive values of θ allow gradients to vary locally on the manifold
(i.e., to vary over time), consistentwith state dependence. As recommended
by Deyle et al. (2016), we selected θ by optimizing on prediction error
(mean absolute error, MAE).

2.6. Software

We performed SSA using CaterpillarSSA 3.40 (GistaT Group, 2010). All
other procedures were performed in R 4.1.0 (R Core Team, 2021) with the
following packages. Data processing and visualization: ‘dplyr’ (Wickham
et al., 2021), ‘plyr’ (Wickham, 2011), ‘tidyr’ (Wickham, 2021), ‘lubridate’
(Grolemund and Wickham, 2011), ‘rgdal’ (Bivand et al., 2021), ‘geosphere’
(Hijmans, 2019), ‘zoo’ (Zeileis and Grothendieck, 2005), ‘animation’ (Xie,
2013). Phase space methods: ‘tseriesChaos’ (Di Narzo and Di Narzo, 2019),
‘rEDM’ (Park et al., 2021), ‘fractal’ (Constantine and Percival, 2014), ‘fields’
(Nychka et al., 2017), ‘pdc’ (Brandmaier, 2015), ‘rgl’ (Murdoch and Adler,
2021), ‘quantreg’ (Koenker, 2021), ‘Matrix’ (Bates and Maechler, 2021).
Data and R scripts are publicly available (https://osf.io/ajf3h/).

3. Results

3.1. S79 and K. brevis

Signals recovered from the K. brevis and S79 time series indicated low-
dimensional, nonlinear-deterministic dynamics—i.e., systematic patterns
of behavior emerging from complex but structured underlying processes.
The K. brevis log-concentration signal explained 66.2% of the variance in
the time series and was dominated by a seasonal (i.e., annual) cycle
(Fig. 4A; Table 1). The K. brevis shadow manifold (embedded in m = 3

https://osf.io/ajf3h/


Fig. 4. Signals and shadowmanifolds forK. brevis and S79 covariates. (A) Time series (black) and signals (red) forK. brevis concentrations and S79 covariates (Caloosahatchee
River estuary), based on monitoring data from NOAA/HABSOS and SFWMD/DBHYDRO. The percentage of variance explained by each signal (signal strength) appears in
parentheses. (B) 3-Dimensional projections of shadow manifolds reconstructed from the signals to the left.

M. Medina et al. Science of the Total Environment 827 (2022) 154149
dimensions) showed visually apparent structure (Fig. 4B), and diagnostic
procedures indicated nonlinear stationarity and low-dimensional determin-
istic structure: Space-time curves oscillated around a stable value (Fig. A.1),
and the null hypothesis of linear-stochastic dynamics was rejected by all
four surrogate data tests (Tables 1, A.1). Likewise, all S79 covariates exhib-
ited signals with a prominent seasonal component, with signal strengths
ranging between 48.9% and 76.9%. Shadow manifolds for the S79 vari-
ables exhibited nonlinear stationarity (oscillating space-time curves) and
low-dimensional deterministic structure (two or more rejections of the
null hypothesis).

The recovery of systematic patterns of behavior in observed K. brevis
dynamics implies that there is some structured causal mechanism (ormech-
anisms) that can potentially be inferred from the data. Extended CCM tests
8

identified S79 discharge (Q), TN concentrations, andNOx concentrations as
systematic drivers ofK. brevis blooms (Fig. 5A). For each of these covariates,
cross-map skill peaked at a negative lag, indicating delayed effects on
K. brevis (Table 2). The results indicate that S79 TN and Q influence
K. brevis with relatively short delays (on the order of one month), while
the influence of S79 NOx occurs with a longer delay (several months). Sea-
sonal surrogate tests of the S79 TN, NOx, and Q cross-mappings each
rejected the null hypothesis of coincidental seasonal forcing (P< 0.05), con-
sistent with a true causal relationship between each of these covariates and
K. brevis (Table 2). Initially, S79 TP and PO4 were identified as potential
drivers of K. brevis (positive cross-map skill at negative lags), but surrogate
data tests identified these results as false positives. The CCM results are
summarized in a causal network diagram (Fig. 5B).



Fig. 5. CCM results. (A) Plots show cross-map prediction skill (ρ) against lags measured in two-week periods. Note that the cross-mapping “X xmap Y” represents the causal
hypothesis “Y drives X.” Red curves indicate mean ρ across lags, and error bars indicate standard deviations across 100 replicate cross-mappings. Red asterisks indicate lags at
which the null hypothesis (coincidental seasonality) was rejected. (B) A causal diagram summarizes CCM results. Black arrows indicate causal relationships detected by CCM;
gray arrows indicate CCM tests yielding negative results. Cross-mappings from coastal K. brevis (Kb) to S79 covariates identified S79 TN, NOx, and discharge (Q) as causal
drivers; subsequently, we cross-mapped from NOx and TN upstream. CCM tests were not performed with S77 NOx (gray), because no signal was recovered from this time series.

Table 2
Summary of convergent cross-mapping (CCM) results (POR: January 2012 – February
2021).

CCM test Peak cross-map
skilla

Lag at peak
skillb

Range of lags
testedb

P
valuec

Hypothesis 1
K. brevis xmap S79 NOx 0.63 −11 [−13,6] 0.002
K. brevis xmap S79 TN 0.44 −2 [−13,6] 0.032
K. brevis xmap S79 PO4 0.51 −13 [−13,6] 0.481
K. brevis xmap S79 TP 0.41 −13 [−13,6] 0.529
K. brevis xmap S79 Q 0.20 −3 [−13,6] 0.036
K. brevis xmap S79 SpC <0 – [−13,6] –
Hypothesis 2
S79 NOx xmap S77 TN 0.52 −3 [−13,6] 0.002
S79 TN xmap S77 TN 0.54 −4 [−13,6] 0.002
S77 TN xmap S65E NOx – 2 [−13,6] –
S77 TN xmap S65E TN 0.54 −7 [−13,6] 0.002
K. brevis xmap S77 TN – 5 [−26,13] –
K. brevis xmap S65E TN – 13 [−26,13] –
K. brevis xmap S65E NOx – 3 [−26,13] –

a Peak skill among all lags tested.
b Lags are measured in two-week periods. Delayed effects are associated with

negative lags. Peak skill at a positive lag indicates a false positive CCM result.
c Tests of the null hypothesis that cross-map skill reflects coincidental seasonality

rather than true causality.
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To quantify interactions among K. brevis drivers identified by CCM (S79
TN, S79NOx, and S79Q), we constructed 3- and 4-dimensional embeddings
and selected the embedding thatmost skillfully predicted theK. brevis signal
for S-mapping analysis. The optimal phase-space embedding (θ = 0.602)
included K. brevis, S79 TN, and S79 Q (Fig. 6A) and provided the basis for
estimating interaction strength dynamics among these variables. Both inter-
action coefficient time series (∂Kb∂TN and ∂Kb

∂Q ) were variable, consistent with
state dependence (Fig. 6B). The strictly positive sign of these interactions in-
dicated that S79 TN and S79 Q consistently facilitated K. brevis blooms; this
result was robust across all alternative 3- and 4-dimensional embeddings
(Table A.2). In Fig. 6C and D, scatterplots of interaction coefficients (partial
derivative values) against associated signals indicate that interactionmagni-
tudes were relatively constant with respect to S79 TN and S79 Q but varied
with respect to K. brevis log-concentrations. The facilitative influence of S79
Q was strongest when K. brevis concentrations were low and rising, early in
the bloom cycle. In contrast, the facilitative influence of S79 TN was stron-
gest later in the cycle, when K. brevis concentrations were high and blooms
were at their peak (Fig. 6E).

3.2. Upstream causal connections

Based on our finding that TN and NOx concentrations at S79 intensify
K. brevis blooms, we investigated N dynamics at upstream stations S77



Fig. 6. S-map results. (A) The optimal phase-space embedding included S79 TN concentrations, TN; S79 discharge, Q; and K. brevis log-concentrations, Kb. Each axis is scaled
to zeromean and unit variance. (B) Interaction time series (partial derivative vectors) quantify the change in Kb effected by changes in TN (black) and Q (blue) over time. (C,
D) Scatterplots show relationships between these interaction strengths and their respective denominators (TN orQ, in panel C) and the numerator (Kb, in panel D). Horizontal
axes are scaled to zeromean and unit variance, and dotted lines within plots indicate the 0.05 and 0.95 quantiles. (E) Stacked time series plots indicate the concurrence of the
strongest interaction periods with associated signals. Based on an arbitrary threshold, the blue and gray regions highlight periods associated with the 80th percentile of ∂Kb∂Q

and ∂Kb
∂TN values, respectively.
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and S65E (Lake Okeechobee and Kissimmee River control structures, re-
spectively) and their causal connections to conditions at S79 (Hypothesis
2). The S77 TN, S65E TN, and S65E NOx time series exhibited signals
(Fig. 7A) with strengths ranging between 45.0% and 64.5% (Tables 1,
A.1). Shadow manifolds reconstructed from these signals exhibited visual
regularity, nonlinear stationarity, and low-dimensional deterministic struc-
ture, as indicated by space-time plots and surrogate data tests (Fig. 7B,
Table 1). In contrast, the S77 NOx time series did not exhibit a low-
dimensional signal, and censoring the two large-magnitude observations
did not substantially improve signal recovery.

Extended CCM tests indicated causal connections between N dynamics
at S79 and at the S77 and S65E stations. In particular, S77 TN drove S79
TN and S79 NOx at zero lag and at several negative lags, with peak cross-
map skill indicating a delay of one to two months (Fig. 5A). Likewise,
S65E TN drove S77 TN concurrently and with delays, with peak cross-
map skill indicating a delay of about threemonths. For each of these results,
surrogate data tests rejected the null hypothesis of coincidental seasonality,
consistent with true causality (Table 2). In contrast, we rejected S65E NOx
as a driver of S77 TN, since cross-map skill was greatest at positive lags. The
diagram in Fig. 5B summarizes these causal connections.

In addition, we applied Extended CCM to directly test for causal connec-
tions between K. brevis and the N covariates at S77 and S65E, over a larger
range of lags, from −26 to 13 periods (−52 weeks to 26 weeks). The re-
sults showed no evidence of causality (Table 2; Fig. A.2). For K. brevis
xmap S77 TN and for K. brevis xmap S65E TN, skill was near zero at non-
positive lags. Skill was greater for K. brevis xmap S65E NOx, but the peak
skill occurred at a positive lag.

4. Discussion

Population growth and land use intensification are associated with sub-
stantial N loading to Charlotte Harbor and Lake Okeechobee (Engstrom
et al., 2006; Turner et al., 2006), and agricultural fertilizers and septic sew-
age are cited as major N sources within the Kissimmee and Caloosahatchee
basins (Lapointe and Bedford, 2007; Ma et al., 2020).Within this context of
Fig. 7. Signals and shadow manifolds for S77 and S65E covariates. (A) Time series (bla
SFWMD/DBHYDRO. The percentage of variance explained by each signal (signal stre
reconstructed from the signals to the left.
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persistent cultural eutrophication, we designed an empirical analysis to in-
vestigate a fundamental question: Does human activity systematically exac-
erbate K. brevis blooms near Charlotte Harbor? We hypothesized that
(1) nutrient-enriched discharges from the Caloosahatchee River have syste-
matically intensified K. brevis blooms near the Charlotte Harbor estuary,
and (2) Lake Okeechobee and the Kissimmee basin contribute to this inten-
sification. Our investigation expands on work by Medina et al. (2020),
which linked S79 NOx concentrations to K. brevis bloom dynamics near
Charlotte Harbor between 2012 and 2018. Our results support Hypothesis
1 as they affirm the link between K. brevis blooms and anthropogenic N in-
puts detected in this prior study over a longer time period (2012−2021)
and indicate that discharges and N inputs from the Caloosahatchee River
systematically facilitate blooms. We additionally traced the influence of N
upstream to Lake Okeechobee and the Kissimmee basin (Hypothesis 2)
and estimated time lags over which these causal connections manifest.

4.1. Bias in the K. brevis sample data

Sampling protocols for K. brevis include both routine sampling at fixed
locations and event-based sampling, which introduces the potential for sys-
tematic bias to the extent that samples are collected when and where
blooms are known to exist. One common concern is that event-based sam-
ples are likely upwardly biased relative to conditions across a wider area
(Heil et al., 2014a). In addition, increased sampling effort during recent de-
cades may give a false indication that cell counts have increased on annual
or decadal timescales. Considering that our analytical approach was fo-
cused on patterns of behavior rather than changes in absolute magnitudes,
however, a more important concern for our study was that preferential sea-
sonal sampling (if present) may introduce a false seasonal signal. While
some level of sampling bias is irreducible, we believe that aspects of the
K. brevis sampling program, combined with our study design, reduced
bias to an acceptable level.

Between January 2005 and February 2021, sampling effort was typi-
cally greatest during the months of October, November, and December,
with a mean of 114 (±13 s.d.) samples per month, whereas the average
ck) and signals (red) for S77 and S65E covariates, based on monitoring data from
ngth) appears in parentheses. (B) 3-Dimensional projections of shadow manifolds
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for January through September was 87 (±8 s.d.) samples per month
(Fig. A.3A). While this discrepancy should not be ignored, we applied SSA
to the 14-day time series of sample counts anddid notfind evidence of strong,
sustained seasonal bias (Fig. A.3B). Seasonal components (i.e., the annual
cycle) of this time series explained only 9% of the series' variance, whereas
longer-term trend components accounted for 44% of the variance, indicating
that inter-annual differences in sampling effort were more important than
intra-annual (seasonal) differences. In addition, theK. brevis sample data indi-
cate good spatiotemporal coverage at the 14-day temporal resolution. The in-
tervals between sampling events were typically short (Fig. A.3C): 84% of the
intervals were less than one day (indicating two or more samples per day),
and 10%were greater than one day and less than two days (samples on con-
secutive days). In terms of spatial coverage, in Video A.1, each frame visual-
izes K. brevis sample locations and magnitudes during a 14-day period. Each
frameof this visualization indicates that samplingwas distributed throughout
the study area and shows several routine monitoring locations (points whose
locations persist across frames), with few exceptions. Finally, spatiotemporal
aggregation (averaging) and signal processing (SSA) of these sample data re-
duced the influence of high-magnitude event-based samples.

4.2. Interpretation of causal results

In this study, we sought to transcend the limitations inherent in apply-
ing correlation tests to analyze complex systems, with the goal of resolving
ambiguities that have emerged from past empirical studies of the
eutrophication-bloom relationship in southwest Florida (e.g., Dixon et al.,
2014; Dixon and Steidinger, 2002).Our approachwasmotivated by the rec-
ognition that variables in a complex system may interact on a consistent
basis and yet exhibit inconsistent correlations, which may or may not be
meaningful (Sugihara et al., 2012). As such, we designed empirical analyses
to test causal hypotheses in the context of state dependence and to guard
against mistaking mere coincidence (shared seasonal forcing) for true cau-
sality. Our analysis focused on anthropogenic forcing along a major flow
path to the Charlotte Harbor estuary, and themethods could likewise be ap-
plied to infer causal relationships among K. brevis blooms, their natural
drivers, and anthropogenic forcings from other basins throughout the wa-
tershed (assuming the availability of sufficient data).

The CCM tests found the ‘signature’ of several S79 covariates in K. brevis
bloom dynamics, indicating that Caloosahatchee River discharges and NOx
and TN inputs systematically influenced K. brevis blooms near Charlotte
Harbor. These results are particularly compelling considering the relatively
large spatial domain of the K. brevis observations. Whereas it would not be
unexpected to discover that S79 conditions are causally related to K. brevis
dynamics in the immediate vicinity of the Caloosahatchee estuary, our re-
sults indicate that S79 conditions influence K. brevis bloom dynamics over
a larger domain (Fig. 1).

When interpreting the time lags associated with each detected S79-
bloom relationship (Fig. 5), one should consider that CCM was applied to
spatiotemporally aggregated bloom data, and as such, the resulting lag esti-
mates represent an aggregate over the full Charlotte Harbor estuary and
study period. The real-world time lags likely vary at different locations
within the study area at different times. Nonetheless, the detected time
lags do suggest some interesting patterns. The relatively rapid effect of TN
(2 to 8 weeks) on K. brevis concentrations, compared to the effect of NOx
(14 weeks or more), indicate that K. brevis populations respond more
quickly to estuarine inputs of organic N and/or NH4

+ than to NOx inputs,
and these results suggest distinct trophic and regeneration pathways for
the various N constituents prior to assimilation by K. brevis. This interpreta-
tion is consistent with earlier studies indicating that dissolved organic N is
typically relatively abundant in the Charlotte Harbor estuary (Bronk et al.,
2014); K. brevis is nutritionally flexible and can take up organic N forms,
such as urea, as well as inorganic N (Bronk et al., 2014); urea is associated
with more rapid K. brevis cell division, as compared to inorganic forms
(Sinclair et al., 2009); and the species has a greater affinity for NH4

+ than
NO3

− and organic N, although organic N reduces to NH4
+ (Bronk et al.,

2014; Killberg-Thoreson et al., 2014).
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The S-mapping results indicate that the net effect of N-enriched Caloo-
sahatchee River discharges (S79) between 2012 and 2021 has been to in-
tensify K. brevis blooms near Charlotte Harbor (Fig. 6B). While it is
conceivable that discharges may at times simultaneously facilitate and in-
hibit blooms—e.g., large discharges might reduce estuarine salinity to less
than optimal levels for K. brevis proliferation, or flush cells from the area
—we found no evidence that any such inhibitive effect dominated the
discharge-bloom interaction across the study area as a whole. The effects
of both discharge and TN concentrations were consistently positive and
sensitive to K. brevis levels. Discharge was most strongly influential when
K. brevis concentrationswere low and rising (Fig. 6E), indicating that Caloo-
sahatchee River discharges play a role in the earliest stages of coastal
blooms. This result points to several plausible mechanisms. One particu-
larly intriguing possibility is that discharges facilitate advection and con-
centration of K. brevis cells into the Charlotte Harbor estuary by altering
the area's hydrodynamics and enhancing the flood phase of tidal exchanges
through San Carlos Bay and other inlets (Dye et al., 2020; Shi et al., in
preparation). It is also possible that Caloosahatchee River discharges de-
liver iron or other nutrients that facilitate early population growth (Jones
et al., 2011) and that large discharges mobilize benthic N (Seitzinger
et al., 1991). Periods of relatively strong facilitation by discharge were typ-
ically followed by even stronger facilitation by TN concentrations, which
exerted its greatest influence at the height of K. brevis bloom events
(Fig. 6E), suggesting that anthropogenic TN helps to intensify, maintain,
and thus prolong blooms. Collectively, these results suggest that it is not
only the magnitude of discharges and TN loads that are important, but
also the timing of these watershed inputs relative to a bloom's stage of de-
velopment (and perhaps other factors).

Next, we investigated whether NOx and TN dynamics at S79 could be
traced upstream to Lake Okeechobee (S77) and the Kissimmee basin
(S65E). We adopted a ‘daisy chain’ strategy by proceeding upstream from
S79 to S77 to S65E and testing whether N signals at each successive pair
of stations showed evidence of a causal connection. Indeed, the results indi-
cate that S65E TN signals drive S77 TN signals, which in turn drive S79NOx
and TN signals. The time lags associated with these causal connections
ranged from zero up to the maximum value tested: 13 periods, or
26 weeks (Fig. 5A). The peak skill of the S79-S77 cross-mappings occurred
at lags of 6 weeks (S79 NOx) and 8 weeks (S79 TN), consistent with esti-
mated Caloosahatchee estuary residence times ranging between 4 and
60 days largely depending on S79 discharge (Wan et al., 2013). The peak
skill of the S77 TN xmap S65E TNmapping occurred at 14weeks, consistent
with wind-driven circulation patterns and typical surface velocities in hy-
drodynamic simulations (Jin et al., 2000; Jin et al., 2002), despite nominal
residence times on the order of several years (Janus et al., 1990). That we
did not recover a signal in the S77 NOx time series or detect a causal link
between S65E NOx and S77 TN is consistent with rapid denitrification
and biological assimilation of inorganic N forms within Lake Okeechobee,
where prior work has suggested that excessive P loading has shifted the
Lake to a primarily N-limited regime (Havens, 1995; Ma et al., 2020).
Collectively, the results of the causal analysis indicate that anthropogenic
intensification of coastal K. brevis blooms involves discharges and N loads
originating from a vast inland area (Lake Okeechobee and the Kissimmee
basin) and imply that other areas that were not included in this analysis
(e.g., the Peace and Myakka basins) may also substantially contribute to
bloom intensification (Fig. 1).

We subsequently applied CCM to test more directly for causal connec-
tions between K. brevis and N covariates at S77 and S65E. The results
were negative and point to the difficulty of detecting causality along a
flow path that passes through multiple control structures within an inten-
sively managed hydrological system. The negative results also point to
the importance of other factors mediating watershed forcing of coastal
K. brevis blooms, such as Caloosahatchee basin dynamics. Our analysis did
not isolate the influence of the Caloosahatchee basin (S79 conditions inte-
grate water quality conditions from this basin and the Lake), but past
work indicates that this basin is an important source of N loads (Lapointe
and Bedford, 2007; Rumbold and Doering, 2020).
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In terms of nutrient limitation, for any biological response subject to a
limiting factor (e.g., K. brevis blooms), one should expect the dynamics of
that factor to exert a detectable influence on the response. As such, our re-
sults are suggestive of N limitation, consistent with observed coastal water
column N:P ratios well below the Redfield ratio and an abundance of dis-
solved P attributed to inland phosphorite deposits and mining activity
(Brand and Compton, 2007; Vargo, 2009; Walsh and Steidinger, 2001).
Of course, these results do not imply that anthropogenic N inputs alone
drive coastal K. brevis bloom intensification. These blooms represent a cul-
mination of a complex set of dynamic factors and processes—including
ocean circulation, salinity, availability of phosphate and other nutrients,
and ecological interactions (Glibert et al., 2009; Paerl et al., 2018;
Steidinger, 2009)—that may in turn influence the efficacywith which N in-
puts are converted intoK. brevis biomass (state dependence). Further empir-
ical investigation of the spatiotemporal dynamics of blooms' limiting (or co-
limiting) factors may shed light on the mechanisms underlying coastal
bloom intensification.

Finally, we emphasize that the anthropogenic and natural/oceano-
graphic hypotheses are not mutually exclusive. Recent work has com-
pellingly documented natural processes that explain offshore K. brevis
bloom initiation in the Gulf of Mexico and the shoreward advection of
cells (e.g., Weisberg et al., 2019; Weisberg et al., 2016). These authors
have likewise acknowledged a role for anthropogenic forcing: “Eutro-
phication may help to maintain and intensify a K. brevis bloom once it
manifests near shore” (Weisberg et al., 2016). Based on the evidence
presented here and by Medina et al. (2020), we therefore call on re-
searchers, managers, and policymakers to adopt a holistic view of the
K. brevis problem—a view that considers both watershed and oceano-
graphic processes and their interactions. A holistic approach is not
only scientifically justified but also required if environmental policy
and management are to succeed in mitigating bloom intensity and dura-
tion. Anthropogenic forcing can be managed and reduced with due ef-
fort, while natural forcing cannot.

4.3. Implications, study limitations, and future directions

Based on the persistent causal connection between N-enriched Caloosa-
hatchee River discharges and nearby K. brevis blooms during the past de-
cade, we encourage the research, management, and policy communities
to continue efforts to develop and implement watershed-scale strategies
to address the coastal K. brevis bloom problem. Our results serve as a valu-
able step forward by providing the scientific evidence needed to pursue
opportunities to reduce coastal bloom intensity, duration, and, perhaps,
frequency through strategic watershed nutrient management and Lake dis-
charge operations with coincident benefits to reducing coastal eutrophica-
tion more generally. However, such strategies cannot be expected to
eliminate blooms altogether, since offshore initiation and shoreward advec-
tion of blooms is well documented (e.g., Weisberg et al., 2019). Further in-
vestigation and modeling will be needed to quantify the extent to which
policy and management interventions within the watershed can be ex-
pected to provide relief.

This study provides a robust and broadly applicable empirical frame-
work for detecting systematic anthropogenic influence on coastal HABs in
the context of complexity and state dependence. However, some key
study limitations should be considered. We analyzed a coastal HAB phe-
nomenon on a wide spatiotemporal scale by investigating basin-level wa-
tershed variables along a single flow path as drivers of blooms across a
broad geographical area over a nearly ten-year period. Further, the study
was designed to detect patterns of causal influence over time, rather than
articulate the causal mechanisms underlying singular events. As such, this
relatively high-level study was not designed to describe dynamics at fine
spatial or temporal scales, provide a comprehensive mechanistic explana-
tion of the bloom phenomenon, or account for all anthropogenic factors
and processes that may affect bloom dynamics. In addition, this study did
not engage with the overarching effects of global climate change, sea
level rise, and associated salinity gradient changes.
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To address these limitations and advance understanding of the role of
anthropogenic processes in K. brevis blooms near Charlotte Harbor, further
work will be required to

(1) identify agricultural and urban sub-basins throughout thewatershed that
most strongly facilitate coastal K. brevis blooms, as targets for nutrient
source and transport control, using, for instance, additional data sources
and spatiotemporal machine learning techniques (e.g. Wu et al., 2021);

(2) articulate at finer spatiotemporal resolutions the oceanographic and bio-
geochemical mechanisms of anthropogenic forcing, including discharge-
induced changes to the estuary's hydrodynamics/circulation and nutrient
transport, transformations, and assimilation by K. brevis;

(3) forecast the extent to which nutrient and hydrological management ef-
forts throughout thewatershedwouldmitigate bloom intensity anddura-
tion; and.

(4) develop cost-effective policy, management, and engineering solutions,
such as modifications to the Lake Okeechobee Regulation Schedule, to
minimize HABs. Cost-benefit estimates should account not only for the
benefits of bloom mitigation but also the additional benefits that would
be realized by overall improvements to coastal water quality, such as re-
ducing eutrophication and hypoxia, reducing habitat loss, and enabling
restoration of ecosystem functions and services.

5. Conclusion

We empirically linked K. brevis bloom intensification along the south-
western coast of Florida to anthropogenic forcing from an expansive and
highly developed watershed. While the results of this study are relevant
to land-based nutrient management and policy in Florida, they are not nec-
essarily generalizable to other areas, since the HAB phenomenon is typi-
cally complex, with drivers and causal structures that may vary by locale
and by species. Nonetheless, characterizing anthropogenic forcing and
identifying controlling mechanisms in the context of state dependence are
critical to understanding watershed influences on downstream water qual-
ity and to developing effective policies and management strategies. The
methodological framework applied in this study embodies a deterministic
perspective from which to view environmental dynamics, whose complex-
ity may conceal systematic behavior and causal relationships of relevance
to environmental modelers, managers, and policymakers. The deterministic
perspective potentially enables analysis of dynamic causal interactivity
among climatological, hydrological, biological, ecological, and social subsys-
tems, provided that the interactions are meaningfully governed by a station-
ary, low-dimensional dynamical regime and that the available data are of
sufficient frequency and duration to resolve the dominant cycles of interest.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.154149.

CRediT authorship contribution statement

MM: Conceptualization; Data curation; Formal analysis; Investigation;
Methodology; Project administration; Software; Validation; Visualization;
Writing - original draft; Writing - review & editing.

DK: Conceptualization; Investigation; Project administration; Re-
sources; Supervision; Writing - review & editing.

ECM: Conceptualization; Investigation; Writing - review & editing.
DT: Conceptualization; Investigation; Writing - review & editing.
RH: Methodology; Software; Resources; Validation; Writing - review &

editing.
CA: Conceptualization; Funding acquisition; Investigation; Methodology;

Project administration; Resources; Supervision; Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

https://doi.org/10.1016/j.scitotenv.2022.154149
https://doi.org/10.1016/j.scitotenv.2022.154149


M. Medina et al. Science of the Total Environment 827 (2022) 154149
Acknowledgments

The authors thank Maitane Olabarrieta (University of Florida) for her
assistance with the interpretation of results and the Florida Fish and
Wildlife Conservation Commission for its ongoing K. brevis data collection
efforts. The authors acknowledge the following funding sources: NSF
CAREER (#1652628) to CA; National Academy of Sciences Gulf Coast Early
Career Research Fellowship to CA; and a private donation to the University
of Florida.

References

Anderson, D.M., Burkholder, J.M., Cochlan, W.P., Glibert, P.M., Gobler, C.J., Heil, C.A.,
Vargo, V.A., 2008. Harmful algal blooms and eutrophication: examining linkages from se-
lected coastal regions of the United States. Harmful Algae 8 (1), 39–53. https://doi.org/
10.1016/j.hal.2008.08.017.

Anderson, D.M., Cembella, A.D., Hallegraeff, G.M., 2012. Progress in understanding harmful
algal blooms: paradigm shifts and new technologies for research, monitoring, and man-
agement. Annu. Rev. Mar. Sci. 4, 143–176. https://doi.org/10.1146/annurev-marine-
120308-081121.

Anderson, D.M., Fensin, E., Gobler, C.J., Hoeglund, A.E., Hubbard, K.A., Kulis, D.M., Trainer,
V.L., 2021. Marine harmful algal blooms (HABs) in the United States: history, current sta-
tus, and future trends. Harmful Algae 120, 101975. https://doi.org/10.1016/j.hal.2021.
101975.

Backer, L.C., 2009. Impacts of Florida red tides on coastal communities. Harmful Algae 8,
618–622. https://doi.org/10.1016/j.hal.2008.11.008.

Bates, D., Maechler, M., 2021. Matrix: Sparse and Dense Matrix Classes and Methods (Version
1.3-3). Retrieved from. https://CRAN.R-project.org/package=Matrix.

Bechard, A., 2021. Gone with the wind: declines in property values as harmful algal blooms
are blown towards the shore. J. Real Estate Financ. Econ. 62, 242–257. https://doi.
org/10.1007/s11146-020-09749-6.

Bivand, R., Keitt, T., Rowlingson, B., 2021. rgdal: Bindings for the "Geospatial" Data Abstrac-
tion Library (Version R Package Version 1.5-23). Retrieved from. https://CRAN.R-
project.org/package=rgdal.

Brand, L.E., Compton, A., 2007. Long-term increase in karenia brevis abundance along the
Southwest Florida coast. Harmful Algae 6 (2), 232–252. https://doi.org/10.1016/j.hal.
2006.08.005.

Brandmaier, A., 2015. Pdc: an R package for complexity-based clustering of time series.
J. Stat. Softw. 67 (5), 1–23. https://doi.org/10.18637/jss.v067.i05.

Brandt, C., Pompe, B., 2002. Permutation entropy: a natural complexity measure for time se-
ries. Phys. Rev. Lett. 88 (17), 174102.

Bronk, D.A., Killberg-Thoreson, L., Sipler, R.E., Mulholland, M.R., Roberts, Q.N., Bernhardt,
P.W., Heil, C.A., 2014. Nitrogen uptake and regeneration (ammonium regeneration, nitri-
fication and photoproduction) in waters of the West Florida shelf prone to blooms of
karenia brevis. Harmful Algae 38, 50–62. https://doi.org/10.1016/j.hal.2014.04.007.

Buszka, T.T., Reeves, D.M., 2021. Pathways and timescales associated with nitrogen transport
from septic systems in coastal aquifers intersected by canals. Hydrogeol. J. 29,
1953–1964. https://doi.org/10.1007/s10040-021-02362-8.

Carey, R.O., Hochmuth, G.J., Martinez, C.J., Boyer, T.H., Nair, V.D., Dukes, M.D., Sartain, J.B.,
2012. Regulatory and resource management practices for urban watersheds: the Florida
experience. HortTechnology 22 (4), 418–429. https://doi.org/10.21273/HORTTECH.
22.4.418.

Constantine, W., Percival, D., 2014. Fractal: Fractal Time Series Modeling and Analysis. Re-
trieved from. https://cran.r-project.org/package=fractal.

Court, C., Ferreira, J., Ropicki, A., Qiao, X., Saha, B., 2021. Quantifying the socio-economic
impacts of harmful algal blooms in Southwest Florida in 2018. Retrieved from.

Deyle, E.R., May, R.M., Munch, S.B., Sugihara, G., 2016. Tracking and forecasting ecosystem
interactions in real time. Proc. R. Soc. B Biol. Sci. 283 (1822), 20152258. https://doi.org/
10.1098/rspb.2015.2258.

Deyle, E.R., Sugihara, G., 2011. Generalized theorems for nonlinear state space reconstruc-
tion. PLoS ONE 6 (3), e18295. https://doi.org/10.1371/journal.pone.0018295.

Di Narzo, A., Di Narzo, F., 2019. tseriesChaos: Analysis of Nonlinear Time Series (Version R Pack-
age Version 0.1-13.1). Retrieved from. https://cran.r-project.org/package=tseriesChaos.

Dixon, L.K., Kirkpatrick, G.J., Hall, E.R., Nissanka, A., 2014. Nitrogen, phosphorus and silica
on theWest Florida shelf: patterns and relationships with Karenia spp. Occurrence. Harm-
ful Algae 38, 8–19. https://doi.org/10.1016/j.hal.2014.07.001.

Dixon, L.K., Steidinger, K.A., 2002. Correlation of Karenia brevis in the eastern Gulf of Mexico
with rainfall and riverine flow. In: Steidinger, K.A., Landsberg, J.H., Tomas, C.R., Vargo,
G.A. (Eds.), Harmful Algae 2002: Proceedings of the Xth International Conference on
Harmful Algae. Florida Fish and Wildlife Conservation Commission, Florida Institute of
Oceanography, and Intergovernmental Oceanographic Commission of UNESCO, St. Pe-
tersburg, FL, pp. 29–31.

Dye, B., Jose, F., Allahdadi, M.N., 2020. Circulation dynamics and seasonal variability for the
Charlotte Harbor estuary, Southwest Florida coast. J. Coast. Res. 36 (2), 276–288.
https://doi.org/10.2112/JCOASTRES-D-19-00071.1.

Engstrom, D.R., Schottler, S.P., Leavitt, P.R., Havens, K.E., 2006. A reevaluation of the
cultural eutrophication of Lake Okeechobee using multiproxy sediment records.
Ecol. Appl. 16 (3), 1194–1206. https://doi.org/10.1890/1051-0761(2006)016
[1194:arotce]2.0.co;2.

Florida Department of Environmental Protection, 2016]. Florida Hydrologic Unit Code (HUC)
Basins (Areas). Retrieved from http://publicfiles.dep.state.fl.us/OTIS/GIS/data/HUC_BA
SINS_AREAS.zip. Updated February 2021. Accessed October 2021.
14
[dataset] Florida Department of Environmental Protection, 2017. Statewide land use land
cover. Retrieved from: https://publicfiles.dep.state.fl.us/otis/gis/data/STATEWIDE_
LANDUSE.zip. Updated May 2021. Accessed September 2021.

Fraser, A.M., Swinney, H.L., 1986. Independent coordinates for strange attractors frommutual in-
formation. Phys. Rev. A 33 (2), 1134–1140. https://doi.org/10.1103/PhysRevA.33.1134.

Ghil, M., Allen, M., Dettinger, M., Ide, K., Kondrashov, D., Mann, M., Yiou, P., 2002. Advanced
spectral methods for climatic time series. Rev. Geophys. 40 (1), 1–41.

GistaT Group, 2010. CaterpillarSSA (Version Version 3.40) St. Petersburg, Russia.
Glibert, P.M., Burkholder, J.M., Kana, T., Alexander, J.A., 2009. Grazing by karenia brevis on

synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb.
Ecol. 55 (1), 17–30. https://doi.org/10.3354/ame01279.

Golyandina, N., Korobeynikov, A., 2014. Basic singular spectrum analysis and forecasting
with R. Comput. Stat. Data Anal. 71, 934–954.

Gravinese, P.M., Munley, M.K., Kahmann, G., Cole, C., Lovko, V., Blum, P., Pierce, R., 2020.
The effects of prolonged exposure to hypoxia and Florida red tide (Karenia brevis) on
the survival and activity of stone crabs. Harmful Algae 98, 101897. https://doi.org/10.
1016/j.hal.2020.101897.

Grolemund, G., Wickham, H., 2011. Dates and times made easy with lubridate. J. Stat. Softw.
40 (3), 1–25. https://doi.org/10.18637/jss.v040.i03.

Hassani, H., 2007. Singular spectrum analysis: methodology and comparison. J. Data Sci. 5,
239–257.

Havens, K., 1995. Secondary nitrogen limitation in a subtropical lake impacted by non-point
source agricultural pollution. Environ. Pollut. 89 (3), 241–246. https://doi.org/10.1016/
0269-7491(94)00076-P.

Heil, C.A., Bronk, D.A., Dixon, L.K., Hitchcock, G.L., Kirkpatrick, G.J., Mulholland, M.R.,
Garrett, M., 2014. The Gulf of Mexico ECOHAB: Karenia program 2006-2012. Harmful
Algae 38 (C), 3–7. https://doi.org/10.1016/j.hal.2014.07.015.

Heil, C.A., Dixon, L.K., Hall, E., Garrett, M., Lenes, J.M., O’Neil, J.M., Weisberg, R.W.,
2014. Blooms of Karenia brevis (Davis) G. Hansen & Ø. Moestrup on the West Flor-
ida Shelf: Nutrient sources and potential management strategies based on a multi-
year regional study. Harmful Algae 38, 127–140. https://doi.org/10.1016/j.hal.
2014.07.016.

Hijmans, R.J., 2019. Geosphere: Spherical trigonometry (Version R Package Version 1.5-10).
Retrieved from. https://CRAN.R-project.org/package=geosphere.

Huffaker, R., Canavari, M., Munoz-Carpena, R., Campo-Bescos, M., Southworth, J., 2016.
Demonstrating correspondence between decision-support models and dynamics of real-
world environmental systems. Environ. Model. Softw. 83, 74–87.

Isles, P.D.F., Pomati, F., 2021. An operational framework for defining and forecasting phyto-
plankton blooms. Front. Ecol. Environ. 19 (8), 443–450. https://doi.org/10.1002/fee.
2376.

Janus, L.L., Soballe, D.M., Jones, B.J., 1990. Nutrient budget analyses and phosphorus loading
goal for Lake Okeechobee, Florida. SIL Proceedings 24 (1), 538–546. https://doi.org/10.
1080/03680770.1989.11898795.

Jin, K., Hamrick, J.H., Tisdale, T., 2000. Application of three-dimensional hydrological model
for Lake Okeechobee. J. Hydraul. Eng. 126 (10), 758–771. https://doi.org/10.1061/
(ASCE)0733-9429(2000)126:10(758).

Jin, K., Ji, Z., Hamrick, J.H., 2002. Modeling winter circulation in Lake Okeechobee, Florida.
J. Waterw. Port Coast. Ocean Eng. 128 (3), 114–125. https://doi.org/10.1061/(ASCE)
0733-950X(2002)128:3(114).

Jones, M.E., Beckler, J.S., Taillefort, M., 2011. The flux of soluble organic-iron(III) complexes
from sediments represents a source of stable iron(III) to estuarine waters and to the con-
tinental shelf. Limnol. Oceanogr. 56 (5), 1811–1823. https://doi.org/10.4319/lo.2011.
56.5.1811.

Kantz, H., Schreiber, T., 2004. Nonlinear Time Series Anaysis. 2nd ed. Cambridge University
Press, Cambridge.

Kaplan, D., Glass, L., 1995. Understanding Nonlinear Dynamics. Springer, New York.
Kennel, M.B., Brown, R., Abarbanel, H.D.I., 1992. Determining embedding dimension for

phase-space reconstruction using a geometrical construction. Phys. Rev. A 45 (6),
3403–3411. https://doi.org/10.1103/PhysRevA.45.3403.

Killberg-Thoreson, L., Mulholland, M.R., Heil, C.A., Sanderson, M.P., O'Neil, J.M., Bronk, D.A.,
2014. Nitrogen uptake kinetics in field populations and cultured strains of Karenia brevis.
Harmful Algae 38, 73–85. https://doi.org/10.1016/j.hal.2014.04.008.

Koenker, R., 2021. quantreg: Quantile regression (Version 5.86). Retrieved from. https://C
RAN.R-project.org/package=quantreg.

Lapointe, B.E., Bedford, B.J., 2007. Drift rhodophyte blooms emerge in Lee County, Florida,
USA: evidence of escalating coastal eutrophication. Harmful Algae 6 (3), 421–437.
https://doi.org/10.1016/j.hal.2006.12.005.

Lorenz, E., 1969. The predictability of a flow which possesses many scales of motion. Tellus
21, 289–307.

Ma, P., Zhang, L., Mitsch, W.J., 2020. Investigating sources and transformations of nitrogen
using dual stable isotopes for Lake Okeechobee restoration in Florida. Ecol. Eng. 155,
105947. https://doi.org/10.1016/j.ecoleng.2020.105947.

McGowan, J.A., Deyle, E.R., Ye, H., Carter, M.L., Perretti, C.T., Seger, K.D., Sugihara, G., 2017.
Predicting coastal algal blooms in southern California. Ecology 98 (5), 1419–1433.
https://doi.org/10.1002/ecy.1804.

Medina, M., Huffaker, R., Jawitz, J.W., Muñoz-Carpena, R., 2020. Seasonal dynamics of ter-
restrially sourced nitrogen influence Karenia brevis blooms of Florida's southern Gulf
Coast. Harmful Algae 98, 101900. https://doi.org/10.1016/j.hal.2020.101900.

Milbrandt, E.C., Martignette, A.J., Thompson, M.A., Bartleson, R.D., Phlips, E.J., Badylak, S.,
Nelson, N.G., 2021. Geospatial distribution of hypoxia associated with a Karenia brevis
bloom. Estuar. Coast. Shelf Sci. 259, 107446. https://doi.org/10.1016/j.ecss.2021.
107446.

Milbrandt, E.C., Reidenbach, L., Parsons, M., 2019. Determining the sources of macroalgae
during beach stranding events from species composition, stable isotope analysis, and lab-
oratory experiments. Estuar. Coasts 42 (3), 719–730. https://doi.org/10.1007/s12237-
018-00489-8.

https://doi.org/10.1016/j.hal.2008.08.017
https://doi.org/10.1016/j.hal.2008.08.017
https://doi.org/10.1146/annurev-marine-120308-081121
https://doi.org/10.1146/annurev-marine-120308-081121
https://doi.org/10.1016/j.hal.2021.101975
https://doi.org/10.1016/j.hal.2021.101975
https://doi.org/10.1016/j.hal.2008.11.008
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.1007/s11146-020-09749-6
https://doi.org/10.1007/s11146-020-09749-6
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=rgdal
https://doi.org/10.1016/j.hal.2006.08.005
https://doi.org/10.1016/j.hal.2006.08.005
https://doi.org/10.18637/jss.v067.i05
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242026385385
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242026385385
https://doi.org/10.1016/j.hal.2014.04.007
https://doi.org/10.1007/s10040-021-02362-8
https://doi.org/10.21273/HORTTECH.22.4.418
https://doi.org/10.21273/HORTTECH.22.4.418
https://cran.r-project.org/package=fractal
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242038295778
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242038295778
https://doi.org/10.1098/rspb.2015.2258
https://doi.org/10.1098/rspb.2015.2258
https://doi.org/10.1371/journal.pone.0018295
https://cran.r-project.org/package=tseriesChaos
https://doi.org/10.1016/j.hal.2014.07.001
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242039477095
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242039477095
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242039477095
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242039477095
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242039477095
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242039477095
https://doi.org/10.2112/JCOASTRES-D-19-00071.1
https://doi.org/10.1890/1051-0761(2006)016<1194:arotce>2.0.co;2
https://doi.org/10.1890/1051-0761(2006)016<1194:arotce>2.0.co;2
http://publicfiles.dep.state.fl.us/OTIS/GIS/data/HUC_BASINS_AREAS.zip
http://publicfiles.dep.state.fl.us/OTIS/GIS/data/HUC_BASINS_AREAS.zip
http://2021
https://doi.org/10.1103/PhysRevA.33.1134
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242027267274
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242027267274
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242027416810
https://doi.org/10.3354/ame01279
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242044108710
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242044108710
https://doi.org/10.1016/j.hal.2020.101897
https://doi.org/10.1016/j.hal.2020.101897
https://doi.org/10.18637/jss.v040.i03
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242028115292
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242028115292
https://doi.org/10.1016/0269-7491(94)00076-P
https://doi.org/10.1016/0269-7491(94)00076-P
https://doi.org/10.1016/j.hal.2014.07.015
https://doi.org/10.1016/j.hal.2014.07.016
https://doi.org/10.1016/j.hal.2014.07.016
https://CRAN.R-project.org/package=geosphere
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242012160452
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242012160452
https://doi.org/10.1002/fee.2376
https://doi.org/10.1002/fee.2376
https://doi.org/10.1080/03680770.1989.11898795
https://doi.org/10.1080/03680770.1989.11898795
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(758)
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(758)
https://doi.org/10.1061/(ASCE)0733-950X(2002)128:3(114)
https://doi.org/10.1061/(ASCE)0733-950X(2002)128:3(114)
https://doi.org/10.4319/lo.2011.56.5.1811
https://doi.org/10.4319/lo.2011.56.5.1811
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242013120324
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242013120324
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242013228121
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1016/j.hal.2014.04.008
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
https://doi.org/10.1016/j.hal.2006.12.005
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242013239527
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242013239527
https://doi.org/10.1016/j.ecoleng.2020.105947
https://doi.org/10.1002/ecy.1804
https://doi.org/10.1016/j.hal.2020.101900
https://doi.org/10.1016/j.ecss.2021.107446
https://doi.org/10.1016/j.ecss.2021.107446
https://doi.org/10.1007/s12237-018-00489-8
https://doi.org/10.1007/s12237-018-00489-8


M. Medina et al. Science of the Total Environment 827 (2022) 154149
Murdoch, D., Adler, D., 2021. rgl: 3D Visualization Using OpenGL (Version 0.107.14). Re-
trieved from. https://CRAN.R-project.org/package=rgl.

NOAA National Centers for Environmental Information, 2014]. Physical and Biological
Data Collected Along the Texas, Mississippi, Alabama, and Florida Gulf coasts in
the Gulf of Mexico as Part of the Harmful Algal BloomS Observing System From
1953-08-19 to 2021-03-09 (NCEI Accession 0120767.5.5). Retrieved from https://
www.ncei.noaa.gov/archive/accession/0120767 Updated April 2021. Accessed
April 2021.

Nolte, D.D., 2010. The tangled tale of phase space. Phys. Today 63 (4), 33–38. https://doi.
org/10.1063/1.3397041.

Nychka, D., Furrer, R., Paige, J., S., S., 2017. Fields: Tools for Spatial Data. (Version 12.3).
University Corporation for Atmospheric Research, Boulder, CO, USA. Retrieved from
www.image.ucar.edu/fields.

Paerl, H.W., Otten, T.G., Kudela, R.M., 2018. Mitigating the expansion of harmful algal
blooms across the freshwater-to-marine continuum. Environ. Sci. Technol. 52,
5519–5529. https://doi.org/10.1021/acs.est.7b05950.

Park, J., Smith, C., Sugihara, G., Deyle, D., 2021. rEDM: Applications of Empirical Dynamic
Modeling From Time Series (Version 1.9.1). Retrieved from. https://CRAN.R-project.
org/package=rEDM.

Provenzale, A., Smith, L., Vio, R., Murante, G., 1992. Distinguishing between low-dimensional
dynamics and randomness in measured time series. Physica D 58 (1–4), 31–49. https://
doi.org/10.1016/0167-2789(92)90100-2.

R Core Team, 2021. R: A Language and Environment for Statistical Computing (Version 4.1.0).
R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Regan, H.M., Colyvan, M., Burgman, M.A., 2002. A taxonomy and treatment of uncertainty
for ecology and conservation biology. Ecol. Appl. 12 (2), 618–628. https://doi.org/10.
1890/1051-0761(2002)012[0618:ATATOU]2.0.CO;2.

Rumbold, D.G., Doering, P.H., 2020. Water quality and source of freshwater discharge to the
Caloosahatchee Estuary, Florida: 2009–2018. Florida Scientist 83 (1), 1–20.

Seitzinger, S.P., Gardner, W.S., Spratt, A.K., 1991. The effect of salinity on ammonium sorp-
tion in aquatic sediments: implications for benthic nutrient recycling. Estuaries 14 (2),
167–174. https://doi.org/10.2307/1351690.

Shi, L., Ortals, C., Olabarrieta, M., Valle-Levinson, A., n.d. River discharge effects on tidal
propagation, subtidal flows, and velocity asymmetry in a mixed diurnal-semidiurnal
micro-tidal river estuary. In preparation.

Sinclair, G., Kamykowski, D., Glibert, P.M., 2009. Growth, uptake, and assimilation of ammo-
nium, nitrate, and urea, by three strains of Karenia brevis grown under low light. Harmful
Algae 8 (5), 770–780. https://doi.org/10.1016/j.hal.2009.02.006.

Small, M., Tse, C., 2002. Applying the method of surrogate data to cyclic time series. Physica
D 164, 187–201.

Sonak, S., Patil, K., Devi, P., D'Souza, L., 2018. Causes, human health impacts and control of
harmful algal blooms: a comprehensive review. Environ. Pollut. Protect. 3 (1), 40–55.
https://doi.org/10.22606/epp.2018.31004.

South Florida Water Management District [SFWMD], 2020. DBHYDRO Browser User's Guide.
West Palm Beach, FL.

Steidinger, K.A., 2009. Historical perspective on Karenia brevis red tide research in the Gulf of
Mexico. Harmful Algae 8 (4), 549–561. https://doi.org/10.1016/j.hal.2008.11.009.

Steinman, A.D., Havens, K.E., Carrick, H.J., Vanzee, R., 2002. The past, present, and future hy-
drology and ecology of Lake Okeechobee and its watersheds. In: Porter, J.W., Porter, K.G.
15
(Eds.), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem
Sourcebook. CRC Press, Boca Raton.

Sugihara, G., May, R., Hao, Y., Chih-hao, H., Deyle, E., Fogarty, M., Munch, S., 2012. Detect-
ing causality in complex ecosystems. Science 338, 496–500.

Takens, F., 1981. Detecting strange attractors in turbulence. In: Rand, D.Y.L. (Ed.), Dynamical
Systems and Turbulence. Springer, New York, pp. 366–381.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J., 1992. Testing for nonlinearity in
time series: The method of surrogate data. Physica D 58, 77–94.

Turner, R.E., Rabalais, N.N., Fry, B., Atilla, N., Milan, C.S., Lee, J.M., Tomasko, D.A., 2006.
Paleo-indicators and water quality change in the Charlotte Harbor estuary (Florida).
Limnol. Oceanogr. 51 (1), 518–533. https://doi.org/10.4319/lo.2006.51.1_part_2.0518.

Uusitalo, L., Lehikoinen, A., Helle, I., Myrberg, K., 2015. An overview of methods to evaluate
uncertainty of deterministic models in decision support. Environ. Model. Softw. 63,
24–31. https://doi.org/10.1016/j.envsoft.2014.09.017.

Vargo, G.A., 2009. A brief summary of the physiology and ecology of Karenia brevis Davis (G.
Hansen and Moestrup comb. nov.) red tides on the West Florida Shelf and of hypotheses
posed for their initiation, growth, maintenance, and termination. Harmful Algae 8,
573–584. https://doi.org/10.1016/j.hal.2008.11.002.

Walsh, J.J., Jolliff, J.K., Darrow, B.P., Lenes, J.M., Milroy, S.P., Remsen, A., Bontempi, P.S.,
2006. Red tides in the Gulf of Mexico: Where, when, and why? J. Geophys. Res. 111
(C11), C11003. https://doi.org/10.1029/2004JC002813.

Walsh, J.J., Steidinger, K.A., 2001. Saharan dust and Florida red tides: the cyanophyte connec-
tion. J. Geophys. Res. 106 (C6), 11597–11612. https://doi.org/10.1029/1999JC000123.

Wan, Y., Qiu, C., Doering, P., Ashton,M., Sun, D., Coley, T., 2013.Modeling residence timewith a
three-dimensional hydrodynamic model: linkage with chlorophyll a in a subtropical estuary.
Ecol. Model. 268, 93–102. https://doi.org/10.1016/j.ecolmodel.2013.08.008.

Weisberg, R., Liu, Y., Lembke, C., Hu, C., Hubbard, K., Garrett, M., 2019. The coastal ocean
circulation influence on the 2018 West Florida Shelf K. brevis red tide bloom.
J. Geophys. Res. Oceans 124, 2501–2512. https://doi.org/10.1029/2018JC014887.

Weisberg, R.H., Zheng, L., Liu, Y., Corcoran, A.A., Lembke, C., Hu, C., Walsh, J.J., 2016.
Karenia brevis blooms on the West Florida Shelf: A comparative study of the robust
2012 bloom and the nearly null 2013 event. Cont. Shelf Res. 120, 106–121. https://
doi.org/10.1016/j.csr.2016.03.011.

Wickham, H., 2011. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40 (1),
1–29. https://doi.org/10.18637/jss.v040.i01.

Wickham, H., 2021. tidyr: Tidy Messy Data (Version 1.1.3). Retrieved from. https://CRAN.R-
project.org/package=tidyr.

Wickham, H., François, R., Henry, L., Müller, K., 2021. dplyr: A Grammar of Data Manipula-
tion (Version 1.0.6). Retrieved from. https://CRAN.R-project.org/package=dplyr.

Wu, J., Song, C., Dubinsky, E.A., Stewart, J.R., 2021. Tracking major sources of water contam-
ination using machine learning. Front. Microbiol. 11, 616692. https://doi.org/10.3389/
fmicb.2020.616692.

Xie, Y., 2013. animation: An R package for creating animations and demonstrating statistical
methods. J. Stat. Softw. 53 (1), 1–27. https://doi.org/10.18637/jss.v053.i01.

Ye, H., Deyle, E., Gilarranz, L., Sugihara, G., 2015. Distinguishing time-delayed causal interac-
tions using convergent cross mapping. Sci. Rep. 5 (14750), 1–9. https://doi.org/10.
1038/srep14750.

Zeileis, A., Grothendieck, G., 2005. zoo: S3 infrastructure for regular and irregular time series.
J. Stat. Softw. 14 (6), 1–27. https://doi.org/10.18637/jss.v014.i06.

https://CRAN.R-project.org/package=rgl
https://www.ncei.noaa.gov/archive/accession/0120767
https://www.ncei.noaa.gov/archive/accession/0120767
https://doi.org/10.1063/1.3397041
https://doi.org/10.1063/1.3397041
http://www.image.ucar.edu/fields
https://doi.org/10.1021/acs.est.7b05950
https://CRAN.R-project.org/package=rEDM
https://CRAN.R-project.org/package=rEDM
https://doi.org/10.1016/0167-2789(92)90100-2
https://doi.org/10.1016/0167-2789(92)90100-2
https://www.R-project.org/
https://doi.org/10.1890/1051-0761(2002)012<0618:ATATOU>2.0.CO;2
https://doi.org/10.1890/1051-0761(2002)012<0618:ATATOU>2.0.CO;2
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242015238346
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242015238346
https://doi.org/10.2307/1351690
https://doi.org/10.1016/j.hal.2009.02.006
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242015402490
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242015402490
https://doi.org/10.22606/epp.2018.31004
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242035577505
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242035577505
https://doi.org/10.1016/j.hal.2008.11.009
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242018479526
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242018479526
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242018479526
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242018479526
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242019358096
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242019358096
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242019386828
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242019386828
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242019400110
http://refhub.elsevier.com/S0048-9697(22)01241-4/rf202202242019400110
https://doi.org/10.4319/lo.2006.51.1_part_2.0518
https://doi.org/10.1016/j.envsoft.2014.09.017
https://doi.org/10.1016/j.hal.2008.11.002
https://doi.org/10.1029/2004JC002813
https://doi.org/10.1029/1999JC000123
https://doi.org/10.1016/j.ecolmodel.2013.08.008
https://doi.org/10.1029/2018JC014887
https://doi.org/10.1016/j.csr.2016.03.011
https://doi.org/10.1016/j.csr.2016.03.011
https://doi.org/10.18637/jss.v040.i01
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.3389/fmicb.2020.616692
https://doi.org/10.3389/fmicb.2020.616692
https://doi.org/10.18637/jss.v053.i01
https://doi.org/10.1038/srep14750
https://doi.org/10.1038/srep14750
https://doi.org/10.18637/jss.v014.i06

	Nitrogen-�enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida
	1. Introduction
	2. Methods
	2.1. Overview
	2.2. Study area
	2.3. Data
	2.4. Signal recovery
	2.4.1. Signal processing
	2.4.2. Phase space reconstruction
	2.4.3. Stationarity tests
	2.4.4. Surrogate data tests

	2.5. Causal analysis
	2.5.1. Convergent cross-mapping
	2.5.2. S-mapping

	2.6. Software

	3. Results
	3.1. S79 and K. brevis
	3.2. Upstream causal connections

	4. Discussion
	4.1. Bias in the K. brevis sample data
	4.2. Interpretation of causal results
	4.3. Implications, study limitations, and future directions

	5. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References




